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Abstract—In this work, observations of ocean wave height

from satellite altimeters are assimilated into the coastal wave

model simulating waves nearshore (SWAN) operating in the Indian

coastal waters. The study has two distinctive features. The most

important is the use of certain concepts of the modern particle filter

technique, which does not represent the model probability density

function (PDF) by a Gaussian. The other feature is the joint

assimilation of data from three altimeters. The method starts by

generating an initial ensemble by the bootstrap technique in which

the significant wave height (SWH) field of a control run is per-

turbed by randomly adding bias to produce a member of the

ensemble. At the first assimilation time, a weight-based resampling

of the individual members, known as particles, is performed.

Stronger particles are retained, while the weaker ones are dis-

carded. In order to keep the ensemble size constant, the algorithm

replicates a few strong members. After this resampling, a single

model run is employed in the forecast step using a kind of aver-

aging. At the next assimilation time, a synthetic ensemble is again

formed by the same bootstrapping, and observations are assimi-

lated. The forecast–assimilation cycle is repeated until the

observations are exhausted. Assimilation experiments were con-

ducted for 6 months from February through July in 2016. The

power of the technique is evaluated by validating results with

altimeter data as well as independent data sets from moored buoys.

The results are found to be extremely encouraging for the use of

this method in carrying out coastal wave forecasting.

Key words: Altimeter data assimilation, particle filter, coastal

wave model.

1. Introduction

Coastal zones are important from the point of

view of fisheries, ship routing, tourism and even

naval operations. All these activities are largely

dependent on accurate prediction of waves in the

coastal oceans. Various coastal wave models can be

used to perform this prediction, a very powerful one

being simulating waves nearshore, or SWAN (Booij

et al. 1999). The model has been utilized extensively

for a number of global coasts for wave prediction and

harnessing of renewable wave energy (Dykes et al.

2002; Silva et al. 2016). However, the coastal wave

models in general, and SWAN in particular, suffer

from incomplete knowledge of initial and boundary

conditions and imperfect parameterization of non-

linear processes. A partial solution is provided by the

assimilation of high-quality observations from satel-

lite altimeters and buoys. Following the pioneering

study by Esteva (1988), many researchers have car-

ried out data assimilation in numerical models

(Janssen et al. 1989; Lionello et al. 1992; Lionello

and Hasselmann 1997; Greenslade 2001; Bhatt et al.

2005; Bhowmick et al. 2016; Rusu and Soares 2015).

While all these studies used the method of optimal

interpolation or variants thereof, the study by Rusu

and Soares (2014) employed a local data assimilation

scheme based on recursive successive correction for

assimilating buoy data in the vicinity of Portuguese

ports. There are also more elegant ensemble-based

methods in which the model probability density

function (PDF) is allowed to evolve in time. There

are two such types of methods, namely the ensemble

Kalman filter (EnKF) method of assimilation (Even-

sen 2009) and the particle filter method (van

Leeuwen 2009). Almeida et al. (2016) used EnKF to

assimilate data in the SWAN model. Unlike the

EnKF, the a priori assumption of the Gaussianity of

the model PDF is not made with the particle filter

technique. Rather, the model PDF is represented here

by several randomly chosen particles shot through the

state space of the model, and this freedom makes the

method an attractive and more efficient one compared1 Space Applications Centre, Indian Space Research Orga-
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with the suboptimal EnKF (van Leeuwen 2010).

Because of the use of ensembles, both these methods

are, however, extremely expensive from a computa-

tional point of view. In the case of EnKF, there is a

cheaper alternative known as ensemble optimal

interpolation (EnOI), wherein the forecast covariance

matrix is time-independent as in optimal interpola-

tion, but is formed using an ensemble of model runs.

In the case of ocean circulation models, it is found to

work reasonably well (e.g., Ratheesh et al. 2014). The

search for an analogous simplification of the particle

filter for assimilating wave height data led to the

present work.

In this study, we have assimilated observations

from three different altimeters in SWAN in the

coastal waters of India to improve its predictive

capability. As mentioned earlier, the method is a

simplification of the particle filter and obviously

borrows certain concepts from it. The months of

February through July (inclusive of both months) of

2016 are chosen for assimilation. The choice is not

arbitrary, however. In the month of February, the

wave condition in the coastal waters of India gener-

ally remains very calm, while in July it is extremely

rough. The entire period from February through July

shows how Indian Ocean waves evolve from a calm

to a rough sea state, with an intermediate moderate

sea state. Thus the method can be checked for its

efficiency in all possible wave conditions occurring in

the Indian Ocean by confining to these 6 months.

2. Model and Data

The SWAN model is based on the wave action

balance equation with source and sink terms (Booij

et al. 1999). Mathematically it is expressed as:

oN

ot
þ o CxNð Þ

ox
þ
o CyN
� �

oy
þ o CrNð Þ

or
þ o ChNð Þ

oh
¼ S

r

ð1Þ

S r; hð Þ ¼ Sin r; hð Þ þ Snl r; hð Þ þ Swc r; hð Þ þ Sbf r; hð Þ
þ Sdib r; hð Þ

ð2Þ

where r and h are the relative frequency and direc-

tion of the propagating wave, respectively. N (r, h) is

the two-dimensional wave action density spectrum.

The terms Cx, Cy are the propagation velocities in the

geographic space, while Ch, Cr are the propagation

velocities in h and r space, respectively. S (r, h)
contains the source and sink terms. Sin (r, h) repre-
sents the wind input, Swc (r, h) deals with the energy

dissipation due to white-capping processes, Snl (r, h)
is a nonlinear interaction term that is responsible for

the energy redistribution to higher- and lower-fre-

quency waves, and Sbf (r, h) and Sdib (r, h) represent
the energy dissipation due to bottom friction and the

depth-induced breaking, respectively. The model is

nested in the global wave model (WAM) which is run

between 70�S–30�N and 0�–160�E, covering the

entire Southern Ocean, so that the impact of incoming

swell into the study area (0–25�N and 75–90�E) could
be taken into account. The WAM model has a nom-

inal resolution of 25 km, whereas SWAN operates in

the inner domain and has a nominal resolution of

5 km. The model nested domain is shown in Fig. 1.

With regard to the data used, it was already

mentioned that data from three altimeters have been

assimilated. The altimeters are Jason-2, Jason-3, and

SARAL/AltiKa. Apart from altimeters, buoy data

have been also used for the purpose of validation. We

now briefly describe these data sets.

Jason-2 is at an altitude of 1336 km. The orbit is

circular at a 66� inclination angle covering 95% of

ice-free ocean. Its repeat cycle is 10 days. The

altimeter is a dual-frequency one operating at a

nominal frequency of 13.6 GHz in Ku-band and

5.3 Hz in C-band. Jason-3 is placed at an elliptical

orbit with an inclination of 66.05�, with a perigee of

1331.7 km and apogee of 1343.7 km. SARAL, a joint

ISRO-CNES mission, consists of payloads that

include a Ka-band high-frequency altimeter (AltiKa).

The satellite orbit is sun-synchronous, with an incli-

nation of 98.55� at a height of 814 km. It has a repeat

cycle of 35 days. Because of the high frequency, it

has a very small footprint and hence is more suit-

able for coastal studies including assimilation in

coastal models. In fact, an attempt was already made

to assimilate AltiKa data in SWAN during the trop-

ical cyclone Phailin, with encouraging results

(Bhowmick et al. 2016). However, as already stated,

in the current study the focus is on a more improved

assimilation technique.
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Apart from altimeter data, buoy data have also

been used for validating the results. In the Indian

Ocean, these buoys are deployed by the Indian

National Centre for Ocean Information Services

(INCOIS). These are moored buoys, and the data

consist of meteorological data along with wave data.

The wave data from three moored buoys have been

used in the study. The buoy identification numbers

with their locations are presented in Table 1.

3. Assimilation Scheme and Its Implementation

As mentioned earlier, some concepts have been

borrowed from the particle filter, which is an

ensemble-based technique. The novelty of particle

filter stems from the fact that it does not impose any

restriction on the form of the model PDF. In partic-

ular, it does not assume the PDF to be Gaussian,

which is the standard assumption of EnKF, and which

is often violated in practice (van Leeuwen 2010). The

particle filter is described in many references (Ristic

et al. 2004; Dowd 2006; van Leeuwen 2009). The

technique has been applied in recent times for

assimilating chlorophyll data in biophysical ocean

models, with remarkable success (Mattern et al. 2013;

Ratheesh et al. 2016). Referring the reader to these

references for a thorough understanding of the

Figure 1
The domain of the SWAN model nested in WAM. Also shown are the locations of the buoys used for validation

Table 1

List of buoys used for validation

Buoy ID Latitude (�) Longitude (�)

BD08 18.14 89.66

BD11 13.48 84.01

BD14 6.99 88.03
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method, we confine ourselves to the description of its

basic concepts and how they have been implemented

in this study.

Particle filter, like any other ensemble-based data

assimilation scheme, makes the assumptions that the

model state w is described by a multivariate PDF

pm(w). As in van Leeuwen (2009), we further denote

the PDF of observations by pd(d).

The cornerstone of the particle filter is Bayes’

theorem, which, for our case, reads:

pm wjdð Þ ¼ pd djwð Þpm wð Þ
pd dð Þ ð3Þ

where standard conditional probability notations have

been used for the PDF of the model given the

observations and vice versa. Following van Leeuwen

(2009), hereafter we drop the subscripts in the PDFs,

and it will be assumed that the arguments will clarify

which particular PDF is being talked about. The PDF

in the denominator can be easily calculated from the

numerator by integration:

p dð Þ ¼
Z

p d;wð Þdw ¼
Z

p djwð Þp wð Þd wð Þ ð4Þ

and is simply the normalization of the posterior PDF

taking into account the observations. Thus, in prin-

ciple, the calculation of the posterior PDF needs only

the knowledge of the PDF of observations given the

model and the a priori model PDF. The first can be

calculated by a plausible assumption, more often than

not a Gaussian one. However, other plausible

assumptions are possible, as will be shown presently.

The difficulty lies in the calculation of the a priori

PDF, and particularly its storage, since the dimension

of the state space is prohibitively large. Ensemble-

based techniques address this problem in a variety of

ways. In particle filtering, the model PDF is repre-

sented by a number of random draws from the model

state space, called ensemble members, or particles. If

there are N such particles, namely wiwith the index i

spanning the range 1 to N, the model PDF becomes:

p wð Þ ¼ 1

N

XN

i¼1

d w� wið Þ ð5Þ

Substituting for the model PDF from Eq. (5) into

the basic Eq. (3), we obtain:

p wjdð Þ ¼
XN

i¼1

wid w� wið Þ ð6Þ

with the weights being given by:

wi ¼
p djwið Þ

PN
i¼1 p djwið Þ

ð7Þ

The numerator is the probability density of the

observations given the model state wi and is known as

likelihood. Weight computation thus requires com-

putation of the likelihood which lies at the core of

particle filtering.

Note that the weights are already normalized (so

that their sum is unity). This fact is guaranteed by

Eq. (7). Often the likelihood is taken to be a Gaussian

one, but we want to stress that there is no compelling

reason to do so. Of course, if the analytical form of

the altimeter error distribution was explicitly known,

we could have tried to calculate the likelihood with-

out making any ad hoc assumptions. But we generally

know only a typical altimeter data error (typically

about 0.5 m), and in studies related to data assimi-

lation (at least in the most prevalent OI ones), the

observation error covariance matrix is more often

than not taken to be a diagonal one (actually a scalar

one with all the diagonal values, i.e. the variances,

being identical, typically taken to be about 0.25 m2).

We feel that this is quite heuristic. We avoid this

complexity here by looking upon the weights in

Eq. (7) as some ‘‘probabilities’’, normalized auto-

matically to unit sum. We realize, however, that they

cannot be arbitrary, and somehow have to take into

account the effect of observations. It is reasonable to

suppose that the ‘‘probabilities’’ would be greater if a

particle were closer (in some chosen metric) to the

observation set (at a given time), i.e. a strong particle.

In the case of weaker particles, i.e. those relatively far

from the same observation (in the same metric), these

‘‘probabilities’’ (weights) should be less. We make

the reasonable assumption (Mattern et al. 2013;

Ratheesh et al. 2016) that these weights are inversely

proportional to the ‘‘distances’’ (to be defined later)

between a specific particle and the observation. Our

implementation follows the steps mentioned below

(van Leeuwen 2009).

1. Randomly draw N initial particles.

1170 S. A. Bhowmick et al. Pure Appl. Geophys.
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2. Integrate forward these particles using model

equations.

3. Calculate the weights from Eq. (7) using some

recipe for likelihood and attach the weights to

their corresponding particles.

4. Repeat steps 2 and 3 until all observations are

exhausted.

The scheme described so far is called importance

sampling and was followed in the earlier days of

particle filtering. However, there is a price to pay. A

straightforward application results in filter degener-

acy (van Leeuwen 2009). This means that after a few

assimilation steps, one particle has practically all the

weight, while the others have very low weight, and

the statistical information content is not a meaningful

one. To remedy this situation, the idea of resampling

emerged. The basic idea is to discard particles with

low weight and to retain multiple copies of particles

with higher weight so that the total number of parti-

cles remains the same. Thus step (3) of the previous

scheme is replaced by (3)new.

(3)new Calculate the weights and resample the

particles and again assign them equal weights (1/N).

This weight calculation and resampling is the process

by which observations get assimilated in the model.

Step (4) remains the same as before.

Resampling can be done in many ways. A deci-

sion has to be taken about exactly how many copies

of a particle with a relatively high weight have to be

retained. We have used the concept of stochastic

universal sampling (SUS), as outlined by van Leeu-

wen (2009). Here, all the N weights are put after each

other on a line [0, 1], after which a random number is

drawn from a uniform density on [0, 1/N]. Then

N - 1 line pieces starting from this number with

interval length 1/N are laid on the line [0, 1]. A

particle is chosen when one of the end points of these

line pieces falls in the weight bin of that particle.

Now we come to the specific method of calcu-

lating the weights as employed in the present study.

The method is the same as in Ratheesh et al. (2016),

where the authors took the root-mean-square differ-

ence (RMSD) between the colocated model and

observation pairs as a measure of the distance. In our

case, of course, the observations are those of signif-

icant wave height (SWH) by three different

altimeters. The following simple colocation proce-

dure has been adopted for colocating altimeter

observation and model prediction. Satellite data

within 3 h and within 5 km of a model grid point are

assumed to be colocated with the model predictions.

Assimilation is done every 6 h. Thus, after every 6 h

interval, we compute the distances di between

observation and ith particle. The raw weights wi
raw are

just inverses of these distances (1/di). In other words,

we have taken the likelihood to be proportional to the

inverse of distance. The constant of proportionality

does not concern us at all, since the weights will be

normalized following Eq. (7), and the constant (being

present in both numerator and denominator) will be

cancelled out. This normalization also ensures that

the final weights are dimensionless positive numbers

less than unity. But before directly applying Eq. (7),

we do further manipulation (Mattern et al. 2013;

Ratheesh et al. 2016). We calculate intermediate

weights Wi = (wi
raw/max wi

raw)a where a is a tuning

parameter which spreads or contracts the distribution

of the weights before they enter into the resampling

process. The final weights are:

wi ¼
WiPN
i¼1 Wi

ð8Þ

This, somewhat heuristic, introduction of a tuning

parameter and an intermediate weight has a specific

purpose (Mattern et al. 2013). The parameter a brings

the weights closer together (if\ 1), or spreads them

apart (if[ 1). Note that it does not change the rela-

tive ranking of the weights. The parameter a is not a

theoretical requirement, rather a practical necessity.

If the raw weights are tightly clustered (as is the case

generally for weights coming from satellite observa-

tions), then without this tuning, the particles are

resampled at almost equal probabilities, surely an

undesirable feature in particle filtering. With tightly

packed weights, a\ 1 brings them progressively

closer, which again is undesirable. If a[ 1, the

weights are spread apart and the resampling is sta-

tistically meaningful. A word of caution is required,

however. A high parameter value will cause only the

very few particles with very high weight to be more

likely to be picked and replicated in resampling,

leading eventually to ensemble collapse. Thus a

careful analysis is required to assign a value to this
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tuning parameter such that observations are fully

exploited without causing ensemble collapse.

Although in our simplification, in the forecast step

between two successive assimilations, we will use

only one ‘‘average’’ ensemble member (thus without

any risk of collapse), we have retained this feature of

tuning parameters for an improved performance of

the scheme. This simplification, i.e. the use of a

single model run in the forecast step, is the simplifi-

cation of the conventional particle filter that we

made, and this is how we make the technique com-

putationally an inexpensive one. An analogous role

was played by EnOI while simplifying the traditional

EnKF.

Here we must mention an important point of

caution to future researchers regarding the distance

di. As mentioned, in our case, the likelihood is pro-

portional to the inverse of distance. Thus it is possible

that the distance of observation and model ensemble

in some hypothetical scenario may be nil, causing the

likelihood to be infinity. Therefore, to deal with such

hypothetical situation, one may typically normalize

the distance with some reference distance to make it

dimensionless and then add this dimensionless

quantity to unity before considering the reciprocal of

it as the weight.

4. Assimilation Experiments and Results

It was already mentioned that the entire assimi-

lation exercise involves four steps, with step 3 now

consisting of calculation of weights with subsequent

SUS. The first step means generation of initial par-

ticles randomly from the state space of the model.

Conventionally, the initial particles are generated by

running the model several times with different values

of forcing parameter (for example wind for the cur-

rent model), or a few adjustable internal parameters.

However, in the present case, the model resolution is

quite high (5 km) and the domain is large. This

makes conventional ensemble generation a herculean

task. Hence we adopt an easier alternative. The initial

model state is generated by running the model from

some well-defined pre-forecast time. Next, the model

SWH is perturbed using additive bias, which is not

allowed to be more than the standard deviation of

model SWH known from past experiments. From past

studies with the SWAN model in Indian coastal

waters, it is known that this standard deviation can be

as high as 1 m in the month of July and for the

cyclone-induced waves. Thus the bias level is kept

between 0 and 1 m for the 128 members constituting

the model ensemble. The choice of the bias for an

individual particle is completely random. The bias for

an individual particle is a pseudorandom number

between 0 and 1 following uniform distribution. For

an individual particle, the bias is the same at all grid

points. This extreme simplification has been made

bearing in mind the computational burden, and can be

possibly relaxed in the future by making the bias

grid-dependent. The impact of the introduced bias on

the root-mean-square error (RMSE) of each particle

is shown in Fig. 2 for some arbitrarily chosen time.

The plot clearly shows that for this particular instant

of time, the RMSE is lowest when the bias is between

0.2 and 0.4 m.

In step 2, the particles are to be marched forward

in time using model equations. However, SWH is not

a prognostic variable of the model. Thus one must

first find a way to calculate the wave spectrum (the

prognostic variable) from the SWH in order to carry

forward the particles in time. Unfortunately, again,

there is no unique way to obtain a spectrum field

consistent with a given wave height field. The

approach used in this study follows Bhowmick et al.

(2016), which in turn was inspired by an earlier work

(Greenslade 2001). Ideal wave spectra contain energy

due to wind sea or locally generated wind, whose

energy is much stronger and represents the higher-

frequency part of the spectra. The low-frequency part

of the spectra is due to swells. This scheme assumes

that the model predicts the distribution of energy in

wave and swell accurately. Thus the model-generated

wave spectrum is scaled using the ratio of the square

of the perturbed wave height to that of the original

(unperturbed) wave height. This eventually changes

the slope of the spectra without altering the shape of

the spectra.

As outlined earlier, in the next step, first the raw

weights are calculated from the distances between

observation and each particle (actually the model

counterpart of observation calculated from each

individual particle, namely the SWH). Next, the

1172 S. A. Bhowmick et al. Pure Appl. Geophys.
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intermediate weights are calculated using the raw

weights and the adjustable parameter a. The variation

in the intermediate weights with respect to random

bias introduced in SWH for several combinations of

a is shown in Fig. 3. Clearly, for a = 2, 4, 8, the

weights are still tightly clustered. As already

explained, this is an unacceptable feature of assimi-

lation. However, for a = 16 and a = 32, the weights

for 128 members are reasonably spread apart. The

reason for choosing the value 16 is that for a = 32,

the fall in weight is sudden, making the weights

extremely sensitive to the bias introduced in SWH.

On the other hand, for a = 16, the fall is gradual and

the sensitivity is much less pronounced.

The final weights are simply the normalized

intermediate weights from Eq. (8). A resampling is

next performed using SUS as explained earlier.

Strong ensemble members (with relatively large

weights) are kept, while weaker ones are discarded.

In order to keep the number of members constant,

some strong particles are drawn more than once

during resampling. After the resampling is com-

pleted, we form a mean wave height field by simple

averaging. As at the start of the procedure, we form a

modified wave spectrum field from this mean wave

height field, hereafter called the analysed field. We

now apply time marching to this modified ‘‘average’’

spectrum. In this way, we have used a single model

run instead of running the entire ensemble, thus

saving precious computer time. The entire process of

distance-based weight computation and subsequent

resampling constitutes the process by which the

observations are assimilated. This forecast–assimila-

tion cycle continues for the entire duration of the

experiment. We would again like to point out how

our method differs from a traditional particle filter.

After generating the initial ensemble, the particles are

marched forward in time until the first observation

time. Then the entire observation set is assimilated

using the procedure outline above. In the traditional

particle filter, time marching is applied to all the

particles constituting a new ensemble after assimila-

tion, whereas in our method only a single ‘‘average’’

ensemble is marched forward after assimilation, thus

greatly reducing the computational burden. This is

the all-important simplification of the particle filter

Figure 2
Variation in RMSE of each particle vs. random bias introduced
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attempted in this study. It is somewhat analogous to

the EnOI simplification of the EnKF method. This

fact is reflected in the title of this paper. It is worth

noting that, instead of averaging after resampling

(which introduces some noise), we could have taken a

weighted ‘‘average’’ of the ensemble before resam-

pling, thereby saving some computer time. This

might have been possible. But the fact that resam-

pling replicates some strong members while

discarding some weaker ones was quite appealing to

us, and we retained it. Nevertheless, since we are

running just one average member and not the entire

ensemble, the necessary computations are already

reduced considerably. Thus we could afford this

small luxury.

The experiment begins with short spin-up run of

the model, for January 2016. This is followed by two

parallel model runs in two different modes, one in

control mode (without any assimilation) and another

in assimilation mode from the months of February

through July 2016. The National Centre for Medium

Range Weather Forecasting (NCMRWF) wind at

25 km horizontal resolution is used for the purpose of

forcing the model. The assimilation is carried out

using the technique described earlier. AltiKa data

along with Jason-2 and Jason-3 data are used for

assimilation. For each day, the assimilation is carried

out four times at 6 h intervals. This is done for the

entire 6 months from February through July of 2016.

For illustrative purposes, we show the result for 31

July in Fig. 4.

The altimeter tracks on 31 July 2016 are overlaid

on an analysed field (obtained after assimilation) and

control field separately in Fig. 4. The two black cir-

cles in the two panels encircle the superimposed

altimeter tracks. In the lower panel, the altimeter

tracks are clearly demarcated, indicating the failure

of the control run to correctly predict the wave height

at the track location. On the other hand, the altimeter

tracks are almost indistinguishable from the analysed

field in the upper panel, illustrating the power of the

particle filter technique.

We have assimilated altimeter data, and the

results have been compared with data from the same

Figure 3
Schematics showing the variation in weight with random bias introduced for various values of the parameter ‘a’. It brings the weights closer in

the case that they are widely separated (with a\ 1), or it spreads them apart (with a[ 1) if they are tightly packed, similar to this case
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Figure 4
The SWH (m) over the Bay of Bengal on 31 July 2016 at 00:00 GMT from a analysed field and b control field with overlaid SWH from

altimeter tracks
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source. As a confidence-building measure, we now

interpret our results by comparing then with an

independent data set, coming from moored buoys, the

locations of which are mentioned in Table 1. The

model-simulated SWH from the control run and the

assimilation run are extracted at the buoy locations

and are compared with the buoy-measured SWH. The

time series of this comparison from the months of

February through July are shown in Fig. 5. Clearly, at

all the buoy locations, the SWH from the assimilation

run outperforms that from the control run. The impact

appears more prominent for the month of July, when

the wave heights are relatively large. In the month of

February, however, in the initial part of the time

series, the assimilation run mildly overestimates the

wave heights. The scenario, however, soon changes

in the later part of February, when the control run

underestimates the observations to which now the

assimilation is quite close. To better quantify the

improvement, statistical parameters including RMSE,

mean absolute error (MAE), bias with respect to

observation and scatter index (SI) are calculated for

SWH at each buoy location, and the results are shown

in Table 2. The scatter of observed and simulated

Figure 5
Time variation in SWH from observations, assimilation and control runs at three buoy locations in the Bay of Bengal from February through

July 2016

Table 2

Statistical parameters related to SWH at three buoy locations in the control and assimilation runs from February through July of 2016

Buoy ID/statistics BD08 (n = 726) BD11 (n = 705) BD14 (n = 634)

Control Assimilation Control Assimilation Control Assimilation

MAE (m) 0.488 0.290 0.490 0.291 0.556 0.325

Bias (m) 0.461 0.136 0.477 0.139 0.533 0.272

RMSE (m) 0.610 0.370 0.622 0.365 0.623 0.406

SI (%) 38.14 23.13 38.80 22.81 31.85 20.77
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SWH is shown in Fig. 6 for all months of the

experiment for all the buoy locations. The fig-

ure speaks for itself, vividly demonstrating

superiority of the assimilation run. A comparison of

the swell at these buoy locations for the month of July

is shown in Fig. 7. The swell has been improved

Figure 6
The scatter of SWH from observations vs. a control run and b assimilation run for all three Bay of Bengal buoys from February through July

2016 (total number of points = 2061)
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substantially by the assimilation of SWH. However, a

better match between observation and simulation is

noted in the case of wind waves as compared with

that of swells. The SWH measurements from

altimeters that are assimilated in the model are

influenced by both local and remote wind forcing.

Hence one may expect a equal improvement in swell

and wind waves after assimilation. Here, however,

one must bear in mind that during this entire assim-

ilation process, a time window of 6 h is considered,

i.e. altimeter measurements within an interval of

±3 h around a particular time step (after every 6 h)

are assimilated in the model. Thus there is a differ-

ence between the actual measurement times and the

assimilation time. In July, the Indian Ocean has

consistent swell inflow from the Southern Ocean due

Figure 7
Time variation in swell height from observations, assimilation and control runs at three buoy locations in the Bay of Bengal for the high-swell

phase of July 2016
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to monsoon winds. Hence the time lag could be sig-

nificant enough to cause the discrepancy in the case

of swells. Table 3 shows the RMSE of the swell from

the control run and assimilation run at the buoy

locations during all the months of the experiment.

The directional spectra for all frequencies are shown

in Fig. 8. This spectrum is at a location within the

SWAN domain far from altimeter and buoy obser-

vations. At this location, therefore, measurements

cannot directly influence the spectrum and hence

modify it, and so whatever change is seen in the

spectrum after assimilation is a genuine effect of

assimilation. This spectrum illustrates the way this

technique modifies the energy distribution over var-

ious frequencies. Very clearly, the SWH assimilation

has shifted the peak frequency. In the lower-fre-

quency part, the energies are enhanced, which may

have contributed to the improvement in the swell

waves.

5. Conclusions

Space-based satellite observations of waves are

crucial for wave forecasting, since a wide network of

in situ observations is simply non-existent in the

oceans. Assimilation of these observations into wave

models is vital for an accurate medium-range forecast

of the wave state. Until now, satellite data were

assimilated into wave models using traditional

Table 3

Statistical parameters related to swell heights at three buoy locations in the control and assimilation runs from February through July of 2016

Buoy ID/statistics BD08 (n = 726) BD11 (n = 705) BD14 (n = 634)

Control Assimilation Control Assimilation Control Assimilation

MAE (m) 0.182 0.193 0.305 0.239 0.492 0.318

Bias (m) 0.06 0.089 0.263 0.130 0.268 0.486

RMSE (m) 0.258 0.269 0.466 0.3423 0.620 0.396

SI (%) 22.67 23.81 35.744 26.24 37.1 24.27

Figure 8
The frequency-wise distribution of action density spectra at some arbitrary location in the Bay of Bengal for 31 July 2016 showing the way

assimilation modified the model spectra
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techniques, in which either the model PDF was

assumed to be stationary or, even if it was allowed to

propagate in time, it was arbitrarily assumed to be

Gaussian, thus severely limiting their applicability for

assimilating data into high-resolution nonlinear

coastal models with PDFs, not necessarily Gaussian

ones. In recent years, an appealing alternative, not

bound by these restrictions, has emerged. It goes by

the name of particle filter, which although ensemble-

based does not assume any preassigned form of the

model PDF. In this paper we have used concepts from

this technique for assimilating satellite altimeter-

derived SWH data into a state-of-the-art coastal wave

model operating in the Indian coastal waters. Another

novel feature of this study is the use of data from

three altimeters. Data have been assimilated sequen-

tially at 6 h intervals. Our method is of course

simplified because the full power of the particle filter

technique has not been exploited, the reason being

purely computational. In effect, our technique is a

counterpart of EnOI in the particle filter domain. The

assimilation run spans the period from February

through July (inclusive of both months) of 2016. A

parallel control run is also carried out for the same

period. The results are first interpreted in terms of

comparison with altimeter data, and then, more

importantly, with independent buoy observations.

The results unequivocally demonstrate the efficiency

and power of this simplified technique based on

particle filter concepts for assimilating data into

nonlinear high-resolution models for forecasting

waves in the Indian coastal waters.
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